第05讲:神经网络、深度学习及其在电池状态估计领域的应用【AESA陈铖】
发表时间:2020-07-02     阅读次数:


分享人陈铖

现为北京理工大学AESA课题组博士研究生,主要研究方向为动力电池核心算法及开发应用,博士课题为车载锂离子动力电池多状态协同估计方法研究,参与课题组的纵向课题与企业委托项目多项。(个人网页)


讲座摘要

本讲座介绍了目前人工智能与大数据技术中部分重要概念的含义、以及当前机器学习算法的分类;重点介绍机器学习算法中最常用的神经网络基本结构、训练算法、及其在电池建模与状态估计上的应用;介绍深度学习的原理、用于图片识别的CNN、及其在电池建模与状态估计上的应用;分析了当前基于神经网络的电池状态估计算法存在的不足与未来的发展方向。


相关文献

[1] C. Chen, R. Xiong, R. Yang, W.X. Shen and F. Sun. “State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter,” Journal of Cleaner Production, vol. 234, 2019, pp. 1153–1164. (点击下载)

[2] R. Yang, R. Xiong, W. Shen and X. Lin, “Extreme learning machine based thermal model for lithium-ion batteries of electric vehicles under external short circuit,” Engineering, 2020, doi.org/ 10.1016/j.eng.2020.08.015. (点击下载)

[3] Y. Zhang, R. Xiong, H. He and M. Pecht, “Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 5695–5705, 2018. (点击下载)

[4] W. He, N. Williard, C. Chen and M. Pecht. “State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation,” Electrical Power and Energy Systems, vol. 62, 2014, pp. 783–791. (点击下载)

[5] M. Charkhgard and M. Farrokhi, “State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4178–4187, 2010. (点击下载)

[6] Xiong R. Battery Management Algorithm for Electric Vehicles[M]. Springer, 2020.

[7] Xiong R, Shen W. Advanced battery management technologies for electric vehicles[M]. John Wiley & Sons, 2019.

[8] 熊瑞. 动力电池管理系统核心算法[M]. 北京:机械工业出版社,2018.


上一篇:第06讲:动力电池热建模理论与应用案例【AESA李幸港】
下一篇:第04讲:卡尔曼滤波算法原理及其在电池状态中的应用【AESA段砚州】
0
联系地址:北京市海淀区中关村南大街5号北京理工大学   Copyright  ©  2020-   先进储能科学与应用课题组  All Rights Reserved.网站地图
友情链接: 北京理工大学    ICEIV2022会议    机械与车辆学院    机械工程学报    Applied Energy期刊