Curriculum Vita

Name: Hongwen He

Position: Professor, Vice Dean

Gender: Male; Date of Birth: Sept.21, 1975

E-mail: hwhebit@bit.edu.cn;

Tel: +86 10 6891 8879 (Office)

Address: National Engineering Laboratory for Electric

Vehicles, Beijing Institute of Technology (BIT),

No.5 Zhongguancun South Street, Haidian

District, Beijing, 100081, P.R.China

Research Interests:

Design and Inteilligent Control on Powertrains in Hybrid Vehicles Energy Management and Optimization Control on Electric Vehicles Modeling and State Estimations of Batteries

Education

Mar.2000 – Mar.2003	School of Mechanical Engineering, Beijing Institute of Technology	Ph.D. In Vehicle Engineering
Aug.1997 – Mar. 2000	School of Automotive Engineering, Jilin University of Technology	Master of Science In Vehicle Engineering
Sept.1993 – Jul. 1997	School of Automotive Engineering, Jilin University of Technology	Bachelor In Vehicle Engineering

Employment

Mar.2003 – Jun.2007	School of Mechanical Engineering, BIT	Assistant Professor
Jul.2007 – Jun. 2011	School of Mechanical Engineering, National Engineering Laboratory for Electric Vehicles, BIT	Associate Professor
Jul.2011 – Now	School of Mechanical Engineering, National Engineering Laboratory for Electric Vehicles, BIT	Professor
Oct.2015- Now	School of Mechanical Engineering, Beijing Institute of Technology	Vice Dean

Professional Activities

- ➤ Principal Investigator of Collaborative Innovation Center of Electric Vehicles in Beijing since 2014
- ➤ Guest Editor of the journal Applied Energy in 2019
- **Editorial Member** of the journal Vehicles since 2019
- **Editorial Member** of the journal Energies since 2018
- ➤ Conference Co-chair of the International Conference on Electric and Intelligent Vehicles, 21-25 November 2018, Australia
- Conference Co-chair of the International Conference on Energy, Ecology and Environment, 26-29 July 2017, Sweden
- > Senior Member of the China Society of Automotive Engineers since 2019
- > Senior Member of the IEEE since 2012
- ➤ **Board Member** of the China Hydrogen Alliance since 2018
- ➤ Board Member of the China Industry Technology Innovation Strategic Alliance for Electric Vehicles since 2014
- ➤ Execultive Director of the 10th Applied Energy UniLab "Batteries and management for all-climate Electric Vehicles" since 2018
- ➤ Director of BIT-Uwaterloo Joint Laboratory for Green and Intelligent Vehicles since 2016
- ➤ Reviewer of 10+ Journals: Applied Energy, Journal of Power Sources, Energy Conversion and Management, Energy, Journal of Energy Storage, International Journal of Energy Research, IEEE Transactions on Vehicular Technology and other 8 Chinese Journals.

Awards

- ➤ Ranked 3rd, the second prize of the Chinese State Science and Technology Progress Award in 2015.
- As the first and corresponding author, the second prize of Best Paper Award by Energies, MDPI in 2015.
- ➤ Ranked 1st, the second prize of the Technological Invention Award by Chinese Minstry of Industy and Information Technology, in 2016.
- ➤ Ranked 1st, the first prize of the China Automotive Technological Invention Award by the China Society of Automotive Engineers, in 2018.

- ➤ Ranked 1st, the first prize of the Natural Science Award by the Chinese Ministry of Education, in 2018.
- ➤ As the corresponding author, 2018 Best Vehicular Electronics Paper Award by IEEE Vehicular Yechnology Society, in 2018.
- Entitled as the Global Highly Cited Researcher in the field of Engineering by Clarivate Analytics in 2019.

Publications

Prof. He, Highly Cited Researcher in the field of Engineering by Clarivate Analytics, has published 85 SCI-indexed papers and 16 ESI papers, which has been cited 4800+ times in SCI database and cited 7000+ times in Google Scholar. Prof. He holds 32 authorized invention patents, and served as the editor-in-chief of the first and most influential handbook in the new-energy vehicle industry of China, "Handbook of Electric Vehicles, Volume 2: Hybrid Electric Vehicles", and 2 automotive planning textbooks for higher education.

The selected 30 papers are listed as following (* means corresponding author):

- [1] <u>He Hongwen*</u>, Yan Song, Xiao Zhenjun. Integrated control method for a fuel cell hybrid system. ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING. 2009, 4(1):68-72
- [2] <u>He Hongwen</u>*, Xiong Rui, Zhang Xiaowei, Sun Fengchun, Fan JinXin. State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. 2011, 60(4): 1461-69
- [3] <u>He Hongwen*</u>, Xiong Rui, Guo Hongqiang. Online estimation of model parameters and state-of-charge of LiFePO(4) batteries in electric vehicles. APPLIED ENERGY. 2012, 89(1): 413-420
- [4] <u>He Hongwen*</u>, Zhang Xiaowei, Xiong Rui, Xu Yongli, Guo Hongqiang. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. ENERGY. 2012, 39(1): 310-318
- [5] Xiong Rui, <u>He Hongwen*</u>, Sun Fengchun, Liu Xinlei, Liu Zhentong. Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles. JOURNAL OF POWER SOURCES. 2013, 229:159-169
- [6] Xiong Rui, <u>He Hongwen*</u>, Sun Fengchun, Zhao Kai. Evaluation on State of Charge Estimation of Batteries With Adaptive Extended Kalman Filter by Experiment Approach. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. 2013, 62(1):108-117
- [7] He Hongwen*, Zhang Yongzhi, Xiong Rui, Wang Chun. A novel Gaussian model based

- battery state estimation approach: State-of-Energy. APPLIED ENERGY. 2015, 151:41-48
- [8] <u>He Hongwen*</u>, Xiong Rui, Peng Jiankun. Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS mu COS-II platform. APPLIED ENERGY. 2016, 162:1410-1418
- [9] Liu Wei, <u>He Hongwen*</u>, Sun Fengchun. Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS. 2016, 353(4):834-56
- [10] Sun Fengchun, Liu Wei, <u>He Hongwen*</u>, Guo Hongqiang. An integrated control strategy for the composite braking system of an electric vehicle with independently driven axles. VEHICLE SYSTEM DYNAMICS. 2016, 54(8): 1031-52
- [11] Liu Zhentong, <u>He Hongwen*</u>. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter. APPLIED ENERGY, 2017, 185: 2033-44
- [12] Sun Chao, Sun Fengchun, <u>He Hongwen*</u>. Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles. APPLIED ENERGY, 2017, 185: 1644-53
- [13] Peng Jiankun, <u>He Hongwen*</u>, Xiong Rui. Rule based energy management strategy for a series-parallel plug-in hybrid electric bus optimized by dynamic programmin. APPLIED ENERGY, 2017, 185: 1633-43
- [14] Wang Chun, <u>He Hongwen*</u>, Zhang Yongzhi, Mu Hao. A comparative study on the applicability of ultracapacitor models for electric vehicles under different temperatures. APPLIED ENERGY, 2017, 196: 268-78
- [15] Xie Shanshan, <u>He Hongwen*</u>, Peng Jiankun*. An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses. APPLIED ENERGY, 2017, 196: 279-88
- [16] Zhang Yongzhi, Xiong Rui*, <u>He Hongwen*</u>, Shen Weixiang. Lithium-Ion Battery Pack State of Charge and State of Energy Estimation Algorithms Using a Hardware-in-the-Loop Validation. IEEE TRANSACTIONS ON POWER ELECTRONICS. 2017, 32(6):4421-31
- [17] Li Gaopeng, Zhang Jieli, <u>He Hongwen*</u>. Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus. APPLIED ENERGY, 2017, 194: 578-87
- [18] Liu Wei, <u>He Hongwen*</u>, Sun Fengchun, Lv Jiangyi. Integrated chassis control for a three-axle electric bus with distributed driving motors and active rear steering system. VEHICLE SYSTEM DYNAMICS. 2017, 55(5): 601-625
- [19] <u>He Hongwen</u>, Jia Hui, Sun Chao*, Sun Fengchun. Stochastic Model Predictive Control of Air Conditioning System for Electric Vehicles: Sensitivity Study, Comparison, and Improvement. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. 2018, 14(9): 4179-89
- [20] Li Shuangqi, He Hongwen*, Li Jianwei*.Big data driven lithium-ion battery modeling

- method based on SDAE-ELM algorithm and data pre-processing technology. APPLIED ENERGY. 2019, 242: 1259-73
- [21] Liu Qingwu, <u>He Hongwen*</u>. The velocity regulation of power consumption with traffic lights for electric vehicles. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING. 2019, 233(9): 2312-22
- [22] Li Yuecheng, <u>He Hongwen*</u>, Peng Jiankun*, Wang Hong. Deep Reinforcement Learning-Based Energy Management for a Series Hybrid Electric Vehicle Enabled by History Cumulative Trip Information. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. 2019, 68(8): 7416-30
- [23] Peng Jiankun, Luo Jiayi, <u>He Hongwen*</u>, Lu Bing. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries. APPLIED ENERGY, 2019, 253: 113520
- [24] Li Yuecheng, <u>He Hongwen*</u>, Khajepour Amir, Wang Hong*, Peng Jiankun. Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information. APPLIED ENERGY. 2019, 255: 113762
- [25] <u>He Hongwen*</u>, Wang Chen, Jia Hui, Cui Xing. An intelligent braking system composed single-pedal and multi-objective optimization neural network braking control strategies for electric vehicle. APPLIED ENERGY. 2020, 259: 114172
- [26] <u>He Hongwen*</u>, Cao Jianfei, Cui Xing. Energy optimization of electric vehicle's acceleration process based on reinforcement learning. JOURNAL OF CLEANER PRODUCTION. 2020, 248: 119302
- [27] Wei Dong, <u>He Hongwen*</u>, Cao Jianfei. Hybrid electric vehicle electric motors for optimum energy efficiency: A computationally efficient design. ENERGY. 2020, 203: 117779
- [28] <u>He Hongwen</u>, Shengwei Quan, Wang Ya-Xiong*. Hydrogen circulation system model predictive control for polymer electrolyte membrane fuel cell-based electric vehicle application. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2020 DOI: 10.1016/j.ijhydene.2019.12.147
- [29] <u>He Hongwen</u>, Quan Shengwei, Sun Fengchun, Wang Ya-Xiong. Model Predictive Control With Lifetime Constraints Based Energy Management Strategy for Proton Exchange Membrane Fuel Cell Hybrid Power Systems. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67(10): 9012-23
- [30] Z. Wei, G. Dong, X. Zhang, J. Pou, Z. Quan and <u>H. He*</u>, Noise-Immune Model Identification and State of Charge Estimation for Lithium-ion Battery Using Bilinear Parameterization. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020. DOI: 10.1109/TIE.2019.2962429.