Dimensioning and Power Management of Hybrid Energy Storage Systems for Electric Vehicles With Multiple Optimization Criteria
发表时间:2021-02-22     阅读次数:     字体:【


摘要

Hybrid energy storage systems (HESS) that combine lithium-ion batteries and supercapacitors are considered as an attractive solution to overcome the drawbacks of battery-only energy storage systems, such as high cost, low power density, and short cycle life, which hinder the popularity of electric vehicles. A properly sized HESS and an implementable real-time power management system are of great importance to achieve satisfactory driving mileage and battery cycle life. However, dimensioning and power management problems are quite complicated and challenging in practice. To address these challenges, this article proposes a bilevel multiobjective design and control framework with the nondominated sorting genetic algorithm NSGA-II and fuzzy logic control (FLC) as key components, to obtain an optimal sized HESS and the corresponding optimal real-time power management system based on FLC simultaneously. In particular, a vectorized fuzzy inference system is devised, which allows large-scale fuzzy logic controllers to run in parallel, thereby improving optimization efficiency. Pareto optimal results of different HESSs incorporating both optimal design and control parameters are obtained efficiently thanks to the vectorization. An example solution chosen from the Pareto front shows that the proposed method can achieve a competitive number of covered laps while improving the battery cycle life significantly.


部分图片:

图1 Framework of the bilevel optimal design and control.

图2 HESS configuration for an electric race car.

引文信息

H. Yu, F. Castelli-Dezza, F. Cheli, X. Tang, X. Hu and X. Lin, "Dimensioning and Power Management of Hybrid Energy Storage Systems for Electric Vehicles With Multiple Optimization Criteria," in IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5545-5556, May 2021, doi: 10.1109/TPEL.2020.3030822.下载链接

其他相关论文



上一篇:Model Prediction and Rule Based Energy Management Strategy for a Plug-in Hybrid Electric Vehicle With Hybrid Energy Storage System
下一篇:Methodology for optimal sizing of hybrid power system using particle swarm optimization and dynamic programming
0
联系地址:北京市海淀区中关村南大街5号北京理工大学   Copyright  ©  2020-   先进储能科学与应用课题组  All Rights Reserved.网站地图
友情链接: 绿色能源与智能载运期刊    北京理工大学    ICEIV2022会议    机械与车辆学院    机械工程学报    Applied Energy期刊